
JJEE Volume 6, Number 3, 2020
Pages 179-203

Jordan Journal of Electrical Engineering ISSN (Print): 2409-9600, ISSN (Online): 2409-9619

* Corresponding author Article’s DOI: 10.5455/jjee.204-1594032108

An Open Source IoT Garage Real Time Controller (GarageRTC)

Daniel A. Zajac1, Jackson Harmer2, Adnan Shaout3*

1, 2, 3 The Department of Electrical and Computer Engineering, The University of Michigan, Dearborn, MI, USA
E-mail: shaout@umich.edu

Received: May 10, 2020 Revised: June 2, 2020 Accepted: June 7, 2020

Abstract— Internet-connected technologies have become mainstays of the modern household. From Internet of
Things (IoT) connected coffee makers to sophisticated adaptive climate control systems, inexpensive wireless
technology and the popularity of voice-activated digital assistants have enabled a wide variety of connected
technology. Most of this technology remains closed source. However, many popular connected technologies such
as Nest or ecoBee rely on closed source protocols and private cloud backends. What happens to the hardware
when these companies go out of business or shut down older services? VueZone shut down its services leaving
owners with severely crippled IoT cameras. This paper focuses on building a proof of the concept of open source
IoT-connected garage real time controller (GarageRTC). It presents the features, design, and implementation of a
reference architecture built on an ESP32 microcontroller and free real-time operating system (FreeRTOS). The
results show that the GarageRTC meets most of the performance and design requirements as identified in the
concept and requirements phase. The system is more than capable of proving responsive interactivity with a
residential garage door system. Moreover, benchmarking - functionally - the system against other commercial
offerings enables it – due to its platform flexibility - to outperform its commercial counterparts.

Keywords— Garage real time controller; Internet of Things; free real-time operating system; ESP32
microcontroller.

1. INTRODUCTION

As Internet of Things (IoT) becomes more commonplace in our daily lives, we become

increasingly dependent on the connected services that support their systems. Some of

popular devices, such as the Nest thermostat, are the product of a small team operating as a

startup. As these teams grow, they are sometimes bought out by larger corporations

interested in entering into their respective market. For some less fortunate startups, they

never breakthrough into profitability and slowly fade into obscurity.

What happens to the devices that depend on the cloud services previously maintained

and supported by those teams? Sometimes the equipment can continue to function but with

absent features or limited performance [1]. Often, they are rendered useless as registration

and web-based configuration tools become obsolete [2]. For inexpensive devices, they can be

cannibalized for parts or simply disposed of. However, for more expensive equipment, such

as the Juicero, the founding company dissolved, leaving many users with useless $400 IoT

juice machines [3].

The only guaranteed way, to ensure these devices being indefinitely supported, is to

implement an open source methodology including web application programming interfaces

(API). Preferably, a completely open source hardware and software reference design would

be created and published. Startups, wishing to develop derivative works, could leverage the

technology and extend the designs. If the startup dissolves or no longer support their design

and compatibility with the reference being maintained, an internet community of users

would be able to continue to support it. This concept has been proven to be profitable and

mailto:shaout@umich.edu
https://en.wikipedia.org/wiki/Application_programming_interface

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 180

sustainable in large software efforts such as IBM purchasing Red Hat Linux [4]. In this

context and to prove this concept, our research team designed and built a reference design

for a real-time IoT connected garage control system, the GarageRTC.

The GarageRTC, shown in Fig. 1, is an automated system for a consumer garage

connected as an IoT device. The system makes the status of the garage available to the user

connected remotely through a web-based interface or locally via a display and control panel.

Inside the garage, the system is connected to the garage door opener, a garage light, and an

alarm. The system uses sensors to detect the door position, concentration of carbon

monoxide, temperature, and objects in the path of the door. The user can check the status or

manipulate the controls from the control panel or the web interface.

User

Device

Internet

DISPLAY

LOG

Embedded

System

Manual Buttons

Door Position Sensor

Door Obstacle Detection

Alarm

Light

Temp

Door

CO Level

Web

Host

Fig. 1. GarageRTC concept.

This paper documents the design process, development, implementation, and testing

of a Wi-Fi connected garage monitoring system. It implements a basic JavaScript object

notation (JSON) based API and includes a reference web application that can easily be

hosted in a personal cloud or on a Linux based development board.

1.1. Organization of this Paper

This paper is organized into nine parts:

 Introduction – introduces the motivations and organization of this project

 Objectives and functional description – outlines the high-level objectives for the project

and reviews the design process being employed

 Requirements – reviews the high-level requirements that GarageRTC is designed to

meet

 High-level design – describes the process used to decompose and partition the system

as well as the generation of high-level designs and test plans

 Detail design – discusses the detailed design decisions including the selection of

hardware, software, and web applications

181 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

 Testing – reviews the tests and stages used to ensure continued proper functioning of

the system

 Accomplishments – reviews the objectives met, limitations of the current design,

possible improvements, and lessons learned

 Comparison of commercial offerings – includes a comparative discussion about similar

commercially available products

 Conclusions and closing remarks.

2. OBJECTIVE AND FUNCTIONAL DESCRIPTION

The objective of the GarageRTC project is to develop an open source, real-time,

embedded system that can be integrated with an existing door opener system. The

GarageRTC collects data from obstruction detectors, limit switches, and carbon monoxide

(CO) and temperature sensors. It maintains a connection to a basic web server.

From the control panel or web interface, the user can observe the following:

 Status of the garage door (open, moving, or closed)

 Status of the light (on or off)

 Level of CO

 Temperature in the garage

From either interface, the user can execute commands including:

 Open or Close the door

 Stop door movement

 Turn on/off the Light

 Silence the alarm.

The system monitors the environmental conditions of the garage and can sound an

alarm if any of the following issues are detected:

 CO level is too high

 Low temperature/freezing risk

 High temperature/possible fire

 Movement of the door being interrupted by an object.

This system provides the user with an easy way to operate, monitor, and control the

status of his garage. The scope of this effort is to create the garage interface control, status

architecture, and basic web interface.

This project was developed using a waterfall software development lifecycle.

Adherence to a classic waterfall model was attempted, but during implementation, it was

discovered that the selected 2.31 cm OLED original display was poorly suited. It had only

partially implemented drivers and the display was small and more difficult to read than

expected. The authors returned to the design phase briefly to select another display that met

the requirements and had better driver support. The waterfall software development

lifecycle with the feedback from the design phase is illustrated in Fig. 2.

The maintenance phase is not applicable in this instance as this paper represents the

final stage of this effort. The authors did make several recommendations for future

improvements and the source is available in the public GitHub repository. The proposed

improvements can be found in Section 7 of this paper.

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 182

Project Proposal Paper

System Block Diagram

High Level Design

Test Procedure

Draft Manual

Build HW/SW, Integrate

Unit Testing

Functional Testing

Final Manual

Report

Future

Improvements

Concept

Requirement

Design

Implement

Test

Maintenance

Fig. 2. Waterfall software development lifecycle.

3. REQUIREMENTS

The high-level requirements were developed as part of the initial project proposal

paper during the concept portion of the design process. Functionally, the system needed to

have the following interfaces:

 Electrical interface with a garage door opener

 Electrical interface with a mains voltage light

 Web interface for remote operation

 CO and temperature monitoring

 Limit switches and obstacle detection

 Local display and buttons.

Design details -within the system- were mostly left up to the design activity but were

loosely defined as a conventional web server interfaced to the embedded system. Further

details were provided on the specific functions of each button and the display content. The

web display would mirror the local display and provide buttons to interact with the

embedded system as if the user was local. Response timing goals were also provided and are

summarized in Table 1.

Table 1. Response timing goals.

Parameter Timing requirement

Local display Every 500 ms or better

Obstacle detection Toggle opener within 150 ms from detection

Limit switch Toggle opener within 150 ms from detection

Door movement Toggle opener within 300 ms from press

Light Latch light within 300 ms from press

Idle post to server Post to the server every 5000 ms

Event push to server Post to the server within 500 ms from event

Check server Check remote messages every 1000 ms

From the timing goals and requirements, a system block diagram, shown in Fig. 3, was

composed to illustrate the major partitioning of the system as well as the system inputs and

outputs. The block diagram was annotated to show the type of signal (resistive, digital,

voltage, user datagram protocol (UDP) data, etc.) and the response times for the outputs.

183 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

Obstacle Detection
(Discretes)

Open Source IoT
Connected Garage

Controller

Internet
server

Door Button Control
(Relay)

Alarm Switching
(Relay)

Local Display
(LCD)

Light Switching
(Relay)

Temperature
(Resistive)

Limit Switches
(Digital)

Carbon Monoxide Level
(Voltage)

Obstacle Detection
(Digital)

Interface Buttons
(Digital)

Networked Commands
(<= 1000 ms) (UDP Data)

Idle Network Data
(UDP Data) (<= 5000 ms)
Push Network Data

(UDP Data) (<= 500 ms)

(<= 150 ms)

(<= 150 ms)

(<= 300 ms)

(<= 300 ms)

(<= 500 ms)

Fig. 3. Block diagram of GarageRTC system.

4. HIGH-LEVEL DESIGN

From the block diagram, the major partitioning of the system could be determined. The

functions of the internet server could be developed independently from the embedded

system assuming that good interface constraints could be established. Fig. 4 shows the

decomposition of the functions and responsibilities of the entire system. This section presents

the activities performed as part of the high-level design for the GarageRTC project.

GarageRTC
System

Embedded
Control
System

Web Server
Based

Application

Watchdog
State

Control
Sensing Network

Local
Display

Status
Receiver

Logging Command
Transmitter

Light State Alarm State Door State

Fig. 4. GarageRTC system organization.

4.1. Interface Specification

To enable independent development of the embedded system and web service, a

simple JSON based messaging interface was developed. Three different packets were

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 184

identified: embedded status, status request, and send command. These commands would be

sent over UDP and encoded in a plaintext JSON format. Examples for the EmbeddedStatus,

StatusRequest, and SendCommand are shown in Figs. 5-7.

Fig. 5. EmbeddedStatus packet.

Fig. 6. StatusRequest Packet.

The SendCommand and EmbeddedStatus packets used a bitwise encoding of the

command value for enumerating the door position and the command type. This simplified

the design on the embedded side and required less string parsing using the limited resources

of the microcontroller.

Fig. 7. SendCommand Packet.

The downside of this formatting is that it required the embedded system to compose

strings to send and receive from the server. The embedded system turned out to have ample

resources, both memory and speed, to accomplish the creation and processing of these

messages. The benefits of using this format included the easy consumption of the JSON

format by the web server and the reduced chance of interpretation error.

4.2. Embedded System

For the embedded system, a real-time operating system (OS) was necessary to provide

predictable responses to inputs while simultaneously executing multiple tasks in a timely

fashion. While development of a custom real-time operating system (RTOS) was considered,

ultimately the FreeRTOS project was selected. FreeRTOS implements a real-time kernel and

schedulers targeted as low resource microcontrollers. The project is professionally developed

and is available for free use in open source and commercial embedded systems. It supports

wide variety of hardware and offers excellent documentation and, most importantly, is

freely available including its source [5].

The Espressif ESP series of embedded microcontrollers was selected as the primary

controller for the embedded system. This controller has rich library support and, most

{

 {"name": "alarmStatus", "value": "False"},
 {"name": "doorStatus", "value": "2"},

 {"name": "lightStatus", "value": "OFF"},
{"name": "tempStatus", "value": " 63.4"},
 {"name": "coStatus", "value": "LOW"}

}
Where doorStatus value equals:

 0x0 = OPEN 0x1 = CLOSE
 0x2 = STOP 0x3 = MOVE

{"cmd": "getStatus", "arg": ""}

{CMD:<value>}
Where <value> equals:
0x1 – Door Command
0x2 – Light Command
0x4 – Alarm Command

185 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

importantly, an integrated Wi-Fi transceiver. This would enable the embedded system to be

built physically separate from the web server. The embedded application would be built in

C/C++ as this is the language that the FreeRTOS and Espressif libraries are developed to

support [6]. The Arduino integrated development environment (IDE) was also selected as it

offers integration with the ESP platform, supports linking with FreeRTOS, and provides a

variety of development support tools.

4.3. Web Application

The web application is needed to implement a method to process the packets to and

from the embedded system and post them to a web page. While conceptually this sounds

very simple, the team ended up merging several different projects to achieve the desired

result. The team did not want a page that was continually being refreshed and made the

decision that the page would be asynchronously updated. The web interface should be

updated with the current status without forcing the browser to go through refresh cycles. In

the background, a combination of JavaScript and HTML would fetch and update the

components of the page dynamically.

The web subsystem would need to present a page in HTML format, process

interactions from the user and packets sent via UDP from the embedded system, and convert

user clicks into commands to the GarageRTC. The simplest toolchain to achieve this function

would be a combination of a web server for hosting, cascading style sheets (CSS), and

JavaScript for dynamically updating. Python would act as a go-between, consuming and

converting data, storing the data structures and invoking behaviors such as UDP

communication.

Since the web application was not the primary focus of this effort, several decisions

were made to simplify the design. First, instead of a complete web server stack, Flask was

selected to implement the Python, JavaScript, and HTML frontend. Flask is a

microframework that is useful for rapid prototyping of Python-based transactions [7]. It

dynamically creates web content based on Python models and incorporates an integrated

web server.

The second design decision was to use web sockets for handling the asynchronous

behavior of the web page. Web sockets enable client-server interactive behavior built on

JavaScript [8]. SocketIO is a web socket framework that integrates well with Flask and

JavaScript and enabled the resulting page to be dynamically updated with the system status

without constant refreshing.

4.4. Documentation

During the design phase, two documents were initiated: the initial draft of the product

manual, and the test plan. The draft manual helped to outline how the team expected the

user to interact with the GarageRTC. The manual was then iteratively updated through the

design, implementation, and testing phases. The final manual is available on the project

website.

The test plan was a simple matrix that listed the various stages of testing to be

performed and mapped them to the established requirements. The test plan is summarized

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 186

in Tables 2 and 3. Testing was broken into three parts: embedded, web, and complete system.

The test level (L) indicates U, I, F, or A which are defined as follows:

 U – Unit level testing

 I – Integration testing

 F – Functional testing

 A – Acceptance testing.

Table 2. Embedded system test plan.

L Description Tests function

1E U Board functional Basic I/O, IDE, toolchain

2E U Display LCD Driver, text, display task

3E U A/D sensing AD conversion, scaling

4E U CO CO sensor, calibration

5E U Temperature Temperature, calibration

6E U Relay Relay module, I/O driver

7E U Limit switches Switch input

8E U Buttons Button input

9E U Network Associate, receive, send UDP

10E U Alarm logic State machine for alarm control

11E U Light logic State machine for light control

12E U Door logic State machine for door control

13E U FreeRTOS Scheduler, library compatibility

14E U Shared memory Globals, mutexes, semaphores

15E I Network commands Send/Receive commands

16E I Display Integrate all display elements

17E F Benchtop simulation System performance on bench

18E F Functional System performance installed

19E A Timing System response time

Table 3. Web interface test plan.

L Description Tests function

1W U Flask Flask framework

2W U SocketIO SocketIO interactivity

3W U Database Save/Retrieve data

4W U Network Receive/Send UDP

5W I Settings page Settings functions

6W I Status page Status page

7W I Network commands Send/Receive commands

8W I Embedded Embedded send/receive

9W F Functional System performance installed

5. DETAILED DESIGN

5.1. Traffic Simulators

Python scripts were written to simulate the traffic between the embedded system and

the web interface. They simulated the messaging so that both subsystems could be built

independently. The scripts enabled unit testing of the network sending and receiving with

only one subsystem available. This enabled both the web and the embedded system to be

developed in decoupled timelines.

187 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

5.2. Embedded System Software

The embedded system was divided into five periodic, concurrent, prioritized (P) tasks

as shown in Table 4. The FreeRTOS uses a priority-based preemptive scheduler. Scheduling

frequency was selected based on the timing requirements identified earlier.

Table 4. Tasks, priority, and frequency (3 is the highest).

Task Priority
Frequency

[Hz]

1 TaskReadSensors 3 100

2 TaskUpdateDisplay 1 2

3 TaskPriorityMachines 2 10

4 TaskNetwork 1 2

5 TaskWatchdog 1 0.67

When registered with the scheduler, a task control block and an individual stack are

allocated. The scheduler handles context switching and pulling tasks in and out of execution.

The developer is responsible for handling access to shared resources using mutexes or

queues. The GarageRTC employs three global mutexes for shared resources:

 g_sharedMemMutex – protects shared memory and global variables.

 g_serialMutex – protects access to the serial port.

 g_wdMutex – protects access to the watchdog bowl.

5.2.1. Task Read Sensors

This task is responsible for fetching, converting values from the sensors and making

the results available to other tasks. The task runs every 10 ms and has the highest priority in

the system. It buffers data as it is being collected and then writes it back, protected by the

g_sharedMemMutex. In general, this task implements the following functions:

 Fetching values from sensors

 Scaling/converting values

 Reading/debouncing switches

 Storing values to memory

 Updating shared variables.

5.2.2. Task Update Display

This task is responsible for updating the local display. The task runs every 500 ms and

has the lowest non-idle priority in the system. This task performs the following functions:

 Fetching values from memory

 Posting readings or status to the display

 Calculating the door position and system state for the web

 Updating the displays, which includes: temperature, CO level, connection status and

system state.

5.2.3. Task Priority State Machines

This task is responsible for monitoring door position, obstacle detection, and starting

or stopping door movement. Light control and alarm state were also added into this task.

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 188

The functions of each state machine are described in details below. In general, this task

performs the following functions:

 Maintaining door state

 Starting/Stopping door movement

 Monitoring obstacle detection

 Operating the light state machine

 Operating the alarm state machine.

The light control state machine ensures proper latching of the associated relay. The

state machine takes button press state as an input. It includes dwell states, where the user is

holding down the button. Using the state machine shown in Fig. 8, the button functions as a

press-on and press-off latching output. The state machine prevents the relay from fluttering

if the relay in the button is pressed and held for more time than necessary.

1st Press
/1

Idle
/0

Release
/1

2nd Press
/0

State:0 State:1 State:2 State:3

Fig. 8. Light control state machine.

The door control state machine operates the relay attached to the opener button. When

the DOOR button is pressed on the GarageRTC or door web command, the state machine

triggers the door switch for a period. Then it idles as the door moves. If the door strikes a

limit switch or obstacle, another pulse is sent to the switch to stop the movement. If the user

presses the stop button or a stop web command is sent, the machine moves to the stopping

state. The state machine is shown in Fig. 9.

Idle
/0

Start
/1

Moving
/0

Stopping
/1

State:0 State:1 State:2 State:3
Stop =1 Stop =1

t >= max

t >= max

t < max Limit switches = 0

Limit switches ≠ 0

t < max

door =1

door =0

Fig. 9. Door control state machine.

The alarm control state machine monitors the temperature and CO sensors against

predetermined set points. When the limits are exceeded, the state machine sets the alarm

189 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

relay. If the user presses the alarm button or alarm web command is received, the alarm is

silenced by opening the relay. The alarm state will persist until the value falls into the

acceptable range with hysteresis. The state machine for the alarm control is shown in Fig. 10.

Idle
/0

Alarm
/0

Silenced
/0

State:0 State:1 State:2

minT < temp < maxT
co < maxCO

minT >= temp >= maxT
co >= maxCO

minT >= temp >= maxT
co >= maxCO

minT >= temp >= maxT
co >= maxCO

minT+∆ < temp < maxT -∆
co < maxCO -∆

minT+∆ < temp < maxT -∆
co < maxCO -∆

AlarmBtn = 1

Fig. 10. Alarm control state machine.

5.2.4. Task Network

The network needs to update the task that is scheduled to run based on the time that

was allocated to it.

5.2.5. Task Watchdog

The watchdog needs to monitor all tasks and ensures that they are periodically

operating. This is achieved by creating a bit-wise “bowl” where each of the tasks is required

to set a flag at completion. An interrupt is registered on a timer set to 5 s. In the interrupt

service routine (ISR), a system reset is triggered. Periodically, the watchdog task will check

the bowl. If all bits are set, then the watchdog resets the timer and empties the bowl. If the

bowl is never completely full, such as when one task is starving or stuck, then the watchdog

never resets the timer, as seen in Fig. 11. Eventually, the timer exhausts and the system is

reset, hopefully clearing the fault condition.

T1

T2 ∞

T3

T4

Idle

T1

0000b 1000b 1000b 1010b 1011b 1011b 0000b 1000b

1 2 3 4 5 6 7 8 9 10 11 12 13 ….. FF

A B C D E

F

G

H

WD Timer =

WD Bowl =

Deadlocked!

If bowl = 0xf, reset timer

Overflow!

Fig. 11. Watchdog operation.

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 190

A limitation with this design is that the watchdog may not notice, if a task is missing its

deadlines due to running slowly. As long as the task periodically puts a bit in the bowl and

so do all the other tasks within the TaskWatchdog cycle, then the timer will be reset. For

time-critical tasks, a watchdog with tighter control on timing should be set up and mark that

the system has failed.

5.3. Embedded System Hardware

The proof of concept hardware was built and assembled using off-the-shelf modular

components, breadboard, and a backing board. The components were sourced and

assembled using discrete wiring. The schematics for the completed design are available on

the project website. The complete bill of materials is listed in Table 5. The following

subsections describe the notable components including the microcontroller, CO detector, and

display.

Table 5. Bill of materials.

REF Part PN Quantity

U1 ESP32_NodeMCU B07F877YZQ 1

U2 20x4 character LCD Display 030003LA 1

D1 Laser diode assy 1172 1

D2 Laser detector B01M8PFZRC 1

S1-S5 Mom PCB switch B06XT3FLVM 4

S6-S8 Limit switch V-153-1C25 2

K1 4x Relay assy 4450182 1

J1 USB cable 7T9MV4 1

CO CO detector FTC010-MQ-7 1

R1 10k Thermistor MF52-103 1

R2 10k ohm ±1% 1/4W MFP-25BRD52-10K 1

- Breadboard B01EV6LJ7G 1

5.3.1. Microcontroller

The microcontroller selected is an Espressif ESP32 system-on-a-chip micro-controller

that utilizes the Tensilica Xtensa microprocessor. The specific development board selected is

a NodeMCU-32S, shown if Fig. 12, which includes a USB to serial interface for re-

programming and serial monitoring. The ESP32 is supported by the FreeRTOS project and a

board support package is available for the Arduino IDE.

The ESP32’s features include:

 Dual-core 32-bit processor

 Ultra-low power co-processor

 25 GPIO, 6 analog input, and 2 analog output

 3 UART, 3 I2C, and 2 SPI

 Cryptographic and security ASICS

 4 MB of flash, with 520 KB of SRAM.

 Built-in 802.11n Wi-Fi and bluetooth LE

 Software, hardware, and timer interrupts.

191 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

Fig. 12. NodeMCU-32S compatible ESP32 module.

5.3.2. CO Detector

For CO detection, MQ-7 CO detector integrated onto a development module that

includes a comparator pre-amp was used (see Fig. 13). The module has an adjustable digital

alarm output (not used) and a scaled analog output reporting parts per million of CO.

Fig. 13. MQ-7 carbon monoxide detector.

The challenge with the CO detector was calibration and susceptibility to temperature

and moisture variation. The research team did not have a calibrated source for correcting the

CO concentrations and the sensor was found to be sensitive to fluctuations in temperature

and humidity. The sensor was ultimately roughly calibrated by using ambient in-house CO

readings as “LOW” and then “HIGH” on the tailpipe of a cold start automobile. The

“WARN” threshold was set at approximately 20% of the observed full range and then

adjusted to not trigger any warnings when operating in the home.

5.3.3. Display

The display was initially selected to be a 2.31 cm 128x32 SPI OLED monochrome

graphics display. There were several sources of drivers available for this type of display for

the ESP toolchain. However, when the team attempted to integrate the drivers, they found

that they were only partially functioning. After attempting to integrate the display, manually

updating drivers, and struggling through poor documentation, the team decided to return to

the high-level design phase and select a different display.

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 192

A simpler way to integrate a display was using a 20x4 character LCD display as shown

in Fig. 14. This display is a parallel matrix interfaced through a PCF8574 chip. The PCF8574

is an 8-bit I/O expander for the I2C bus. Drivers already existed for communicating with this

display over I2C and the display was quickly integrated. However, the display does have

somewhat poor contrast and is slow to update.

Fig. 14. 20x4 character LCD SPI display.

5.3.4. Obstacle Detection

For obstacle detection, the team considered interfacing with the break beam eyes

supplied with conventional openers. The research revealed that these sensors typically emit

an AC waveform that the opener looks at to ensure the sensor has not been bypassed.

Ultimately, the team selected a laser module and a laser detector diode pair as shown in

Figs. 15 and 16.

Fig. 15. Laser transmitter and diode detector.

Fig. 16. Laser transmitter and diode detector interfaced with the embedded system.

193 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

5.3.5. Completed Proof of Concept GarageRTC Assembly

The fully integrated assembly was attached to a wooden mount to provide rigidity and

portability. Mounting holes were added to allow the assembly to be fixed to the wall for

testing. The system used a standard 4 gang relay to provide mains switching and opener

button control. Power was provided by means of an AC-DC switching power supply with a

USB adapter or from the laptop.

5.4. Web Service

The web service was constructed with three main pages:

 Menu page for navigating

 Status page for monitoring/commanding

 Settings page for configuring the system.

The menu page, shown in Fig. 17, allows the user to navigate between the landing page

(Home), status, and settings pages. It is accessed through the settings button in the upper

right corner of the display.

Fig. 17. Menu page.

For the status page, the web service used Python to capture and process JSON

packages from the network interface. These were then stored to dictionaries within the Flask

framework. JavaScript would then periodically read the data structure and update the user

interface status page. An interval timer and button clicks were processed by the JavaScript

and fed to the Python data structure via SocketIO and Flask. The status variables stored on

the server were buffered to ensure the data was not overwritten during processing. When

the event was processed, the Python code would create either a command or a “get status”

packet and write it to the network adapter to be sent to the embedded system. A data flow

graph of the web server subsystem is shown in Fig. 18, illustrating the process. The

interactive status page is shown in Fig. 19.

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 194

Store to Python
Data Structure

Process
JSON
Data

Jscript
Raises
Signal

Jscript
Renders

Page

Combine
Command
Into Packet

Web Status
Page

Network
Interface

Read
Network
Packet

Web Button
Process

Interval
Timer

Fig. 18. Data flow graph of the web server subsystem.

Fig. 19. Status page.

The settings page, shown in Fig. 20, allows the user to configure the target GarageRTC

IP address. The user can configure the IP and Port as well and adjust the screen cycle time.

This information is then written back to the database and used for sending/receiving to the

target GarageRTC.

Fig. 20. Settings page.

195 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

5.5. Integration of Web and Embedded System

Finally, the web and embedded sections were brought together for combined testing.

The team encountered minor issues as each team had made assumptions about how the

other subsystem would operate. Some final integration modifications were made and the

web interface was used to call the embedded functions on the bench. The use of the interface

defined early in the design phase and simulators developed to support testing had enabled

quick and successful integration between the two subsystems.

5.6. Unit Testing and Code Refinement

Testing consisted primarily of unit testing during development. Unit tests were used to

verify each component as it was incrementally added to the system. Eventually, as the

system grew more complex and stable as features were added. Finally, the system could be

tested as an assembly. Bench tests of the state machines and outputs were performed.

After the system was mostly integrated and functioning, a code baseline was

established, and several rounds of performance tuning were performed. This consisted of

moving variables out of the global space, reducing loop complexity, and minimizing

memory usage. The remaining global variables were guarded by mutexes and local buffers

established to ensure consistent operation. Several passes were made to remove dead code,

simplify the math, and reduce primitive data types, such as changing integers to bytes.

Rather than dealing programmatically with strings, static char arrays were constructed to

allow indexing into static arrays using integer enumerations. Debug statements and the

inaccessible code were removed.

6. TESTING

Functional testing consisted of walking through all the major functions on the device.

First on the bench, then the unit was installed on a working garage door (see Fig. 21). Several

minor software bugs were identified, and the system timings were adjusted. A video of the

major features of the GarageRTC was produced and uploaded to YouTube [9].

Fig. 21. Functional testing installation.

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 196

A model of the completed system with all submodules integrated into a single

assembly was created, as shown in Fig. 22. This model demonstrates that the packaging

could be substantially reduced, and a neater, more professional-looking package could be

produced.

Fig. 22. Model of integrated RTC assembly.

6.1. Performance

Performance of the GarageRTC was measured in terms of utilization, memory usage,

and measured response timing with respect to the original requirements.

6.1.1. Utilization

Using an oscilloscope connected to the debug pins, the worst-case timing (ei) of each

task was captured. The frequency of scheduling (FMeas) was also captured and thus, the

execution period (pi) of each task is calculated. Using this information, the system utilization

(U) was computed by summing the utilization factors (ui) to be approximately 8.4%. This is

considered extremely underutilized. However, while the ESP32 may be overpowered for the

scheduled tasks, the integrated Wi-Fi is a big benefit. Table 6 shows utilization calculation.

Table 6. Utilization calculation.

Task
FMeas
[Hz]

ei

[ms]
pi ui = ei/pi

TaskReadSensors 100 29.5 E-03 0.01 0.00295

TaskUpdateDisplay 2 39 0.5 0.078

TaskPriorityMachines 10 1.41 E-03 0.1 1.41E-05

TaskNetwork 2 2.015 0.5 0.00403

TaskWatchdog Varies 1.05 E-03 0.67 1.58E-06

U = 0.084

For memory utilization, the current application uses approximately 720 kB bytes or

54% of program memory. Without Networking and UDP libraries, the application consumed

only approximately 15%. This means the network stack and UDP messaging consumes about

524 kB or almost 40% of program memory. Global variables use 38kB (11%) of dynamic

memory leaving 290 kB for local variables which includes individual task stacks.

197 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

6.1.2. Timing

For measuring system timing, the oscilloscope was attached to the input line from the

switch and the second channel was attached to the output signal. The average over 10

presses was measured on the door button, stop button, light button, and the obstacle sensor.

An example of capture between the pressing of the button and the reaction of the relay

closing is shown in Fig. 23.

Fig. 23. Button press (Top) and door relay (Bottom).

The results were that switching occurred as quickly as 40 ms and never slower than

86.2 ms. The average response was around 58.6 ms. The worst-case switching was still far

better than the strictest requirement of 150 ms. The timing for the LCD and network data

was based on cycle time for the task using a debug pin toggling at the start and end of the

task. The resulting timings compared to their respective requirements are shown in Table 7

in which P/F denotes pass/fail.

Table 7. Timing requirements and system measurement.

Parameter Timing requirement
Measurement

[ms]
P/F

Local display Every 500 ms or better 500 P

Obstacle detection Toggle opener within 150 ms from detection < 86.2 P

Limit switch Toggle opener within 150 ms from detection < 86.2 P

Door movement Toggle opener within 300 ms from press < 86.2 P

Light Latch light within 300 ms from press < 86.2 P

Idle post to server Post to the server every 5000 ms 500 P

Event push to server Post to the server within 500 ms from event. <= 500 P

Check server Check remote messages every 1000 ms 500 P

7. ACCOMPLISHMENTS AND LIMITATIONS

7.1. Objectives Met

After reviewing the requirements as defined in the original project proposal, all

objectives that were established at the outset of this project were met. Table 8 contains the

completed requirements matrix.

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 198

Table 8. GarageRTC requirement compliance.

Requirement Description Met?

REQ-001 Manual interface switches Yes

REQ-002 Local display Yes

REQ-003 Light control Yes

REQ-004 Sensing requirements Yes

REQ-005 IoT connectivity Yes

REQ-006 Web service Yes

REQ-007 Timing requirements Yes

7.2. Limitations

The system does have a couple of minor limitations. Firstly, the alarm push

notifications to the server were combined into the same task as the regular network update

task. This means that the best possible response time will be governed by the update time of

TaskNetwork. Furthermore, there is a stacked delay between the reception of the UDP

packet and publishing to the page. This seems to work well in practice, but for more

responsive alerts, more tuning should be put into an asynchronous push from the embedded

system and fine-tuning the cycle time of the web server.

Secondly, the CO detector was not able to be accurately calibrated. The sensitivity to

moisture and temperature means that the calculation for the CO is a function of temperature

and humidity. While temperature is available, the humidity was not. Temperature

measurement was accomplished by the use of a glass bead thermistor on the regulated 3.3V

DC rail. While this was good for gross measurement of temperature, if incorporated into the

CO calculation, it could make the CO output unreliable. The gross calibration of the CO

sensor seems to be mostly sufficient but occasionally will trigger CO false positives when the

garage temperature drops below 10 °C. This could be resolved by sourcing a more robust

sensor as a replacement.

7.3. Lessons Learned

Some of the lessons learned in this project included building out simulators and well

define interfaces prior to assigning tasks to developers. While the high-level interfaces

defined during the early stages of this development project were helpful, if they were more

rigidly defined it would have assured compatibility of the subsystems at integration.

The research team also quickly outgrew the Arduino IDE. The Arduino IDE contains

several nice features, such as an integrated library manager and built-in examples, but it

lacks common features like tab completion, click navigation, and Realtime debugging.

Occasionally, tracking down documentation or finding specific functions within libraries

were mostly hidden from the user. There are development toolchains for the ESP and a

library from Espressif intended for the Eclipse IDE which is a much more feature rich

development environment. Configuring this earlier on and using it throughout the entire

development process would have made development easier especially as the complexity of

the system increased. The Eclipse IDE also supports Python, JavaScript, and HTML

providing a complete ecosystem for this project.

199 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

7.4. Possible Improvements

The project made several design decisions in the interest of simpler development. To

ease network integration, the system employs UDP and no encryption. These are considered

experimentation only configurations and would need to be resolved for a more production-

ready product. The system also interfaces to the garage door lift motor through the operator

button, this too could be improved. Finally, the system depends on the obstacle sensor being

well aligned and can easily be spoofed by jumpering the signal wires. This section discusses

potential improvements to solve these issues intended in a future revision of the GarageRTC

project.

UDP simplifies the design by reducing the network configuration within the web app

and embedded unit, but routing traffic to an area larger than the immediate subnet is

impractical. The excessive packets will hinder network congestion and are not easily

forwarded to another network if the server was not on the same subnet. To solve this, the

system should be moved over to TCP based networking. This would enable security features

such as transport layer security (TLS).

The lack of encryption certainly simplified the design by not having to create/manage

keys or develop pairing processes for the server and embedded unit. Obviously, in this day

and age, any IoT device is under heavy scrutiny from security researchers. With the current

design, anyone on the network could easily replay a packet and get the garage door to move.

The solution would involve adding application layer encryption between the embedded

controller and server. For further protections, TLS could also be added by embedding

certificates that are mutually authenticated.

Another limitation is that the GarageRTC interacts with the garage door lift motor

through the opener button interface. Each garage door operates a little differently, such as

having longer button pulses or automatic reversing after a down trigger. This makes the

interaction between the GarageRTC and the opener not ideal. A potential solution would be

to incorporate a direct-drive reversible H-Bridge controller into the project. That would give

the controller better control over the door. The downside is there are significant safety

impacts that need to be considered when taking direct control of the door lift mechanism.

Lastly, the laser transmitter and receiver used by the project could be improved by

replacing it with a pair of conventional garage break beam eyes. These devices typically use

a proprietary protocol but do incorporate anti-spoof circuitry, so the door controller could

tell if they have been intentionally modified and are more tolerant of misalignment.

Replacing the laser with libraries to interface with different conventional eyes would reduce

system cost, improve safety, reliability, and performance.

8. COMPARISON OF COMMERCIAL OFFERINGS

Several commercial IoT garage devices are available to consumers. These devices are

typically developed by major opener manufacturers and marketed as an upgrade to the

existing opener. This section provides a short review of several of these offerings and their

compatible hardware. Surprisingly, none of these technologies offered native integration

with digital assistants such as Amazon Alexa. We provide a comparison between the

GarageRTC features and the commercial offerings and discuss the benefits and drawbacks of

these paired solutions.

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 200

8.1. Commercial IoT Garage Interfaces

The market was surveyed for commercial IoT garage interfaces that offer similar

capabilities as to those implemented for the GarageRTC project. The two most prominent

opener companies, Chamberlain and Genie, offered hardware designed to interface with

their respective openers. There was also a couple of notable general-purpose add-on

modules designed to interface with a variety of openers. The technologies surveyed were as

follows:

 Chamberlain MYQ-G0301

 Aladdin Connect

 Garage Door Buddy

 GoControl GD00z-4

8.2. Comparison with GarageRTC Features

Next, the team collected documentation publicly available from the device’s respective

marking pages. From this, the research team composed a matrix considering connectivity,

digital assistant integration, sensing and control, local interface, and openness of design. The

compiled data is summarized in Table 9, where: 1 indicates that ESP32 contains the

hardware but reference design does not implement; 2 is an indication that libraries exist that

could integrate this capability [14]; 3 indicates that it can be integrated through

webhook/REST API calls [15] and 4indicates that it requires purchase of additional

hardware.

Table 9. Comparison of commercial devices.

 Feature
MYQ-G301

[10]
Connect

[11]
Door buddy

[12]
GoControl

[13]
GarageRTC

Connectivity

WiFi ✔ ✔ ✔ ✔

Bluetooth 1

ZWave ✔

Digital assistant

Alexa 2

Google 3

Siri 3

Sense/Control

Aux control 4 ✔

Amb. temp ✔

Amb. CO ✔

Door position ✔ ✔ ✔ ✔ ✔

Local control

LCD display ✔

Door ✔ ✔ ✔ ✔ ✔

Aux/Light ✔

Open source

Web App ✔

FOSS ✔

Published API ✔

HW schematic ✔

Universal ✔ ✔ ✔

201 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

8.3. How GarageRTC Differs from Current Solutions

The GarageRTC is comparable to commercial offerings in all categories and stands out

in terms of design openness. The open source nature of the GarageRTC makes it

considerably more adaptable and extensible when compared to the commercial offerings.

It is important to note that security was omitted from the table. The team found that

while the manufacturers advertised various “security assurances”, they did not publish

details on how these were achieved. The GarageRTC does not currently employ any sort of

link encryption and depends completely on the security of the wireless access point. The

team expected the security category to be the location where the commercial offerings would

outshine the project. However, since the details of their security mechanisms could not be

determined, it is difficult to say if the commercial systems are offering more than security

through obscurity. The research work done by Margulies et al. indicates verifying levels of

security effectiveness [16, 17]. For these reasons, the security offerings cannot be effectively

compared without a more thorough evaluation. A proposal for security enhancement on the

GarageRTC project can be found in section 7.4 of this paper.

The commercial offerings did have the advantage in that they tend to offer applications

with credentials. All surveyed solutions offered Android and IOS native apps for their

remote interface. Frequently, these applications are merely wrappers around a web interface.

This simplifies development and can help with security if the site is properly protected. The

location of the IoT service could not be conclusively determined from the surveyed

documentation, but it is reasonable to assume that it is most likely a closed source cloud-

hosted service. If the support for the cloud service is suspended, then these devices would

likely fail to function. Since the GarageRTC hosts a generic web page, it’s reasonable to say

that the GarageRTC offers equivalent performance.

8.4. Benefits and Drawbacks of the Integrated Solution

The primary benefit of the commercially available devices is the corporate-backed

development and support. This translates to more refined software and user-friendly

interfaces as they have superior developer resources as compared to the GarageRTC research

team. They have the capacity to fully implement and test their solutions and maintain

professional assistance hotlines. Furthermore, greater availability of mass production of their

assemblies’ results with prices typically ranging from 50$ to 100$. However, if the popularity

of GarageRTC caught on, the resulting user community could quickly make up this gap.

Further development could produce layouts to meet off the shelf housings or 3D printed

enclosures.

The major drawbacks of the commercial units are their closed source nature.

Vulnerabilities have been identified in the garage door solutions and countless other issues

may exist [18]. These units have not undergone any sort of security community analysis and

publish very little documentation on security controls available. The GarageRTC does not

currently employ any security as it was not the focus of this effort, but could easily integrate

any flavor of security controls the developer prefers. The ESP32 supports hardware

acceleration of cryptographic processes, making encryption/decryption on the

microcontroller fast and lightweight. Since the source is open, the security community could

© 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3 202

then review the implementation, identify potential flaws and make recommendations for

remediation.

The closed source communication protocols also mean that the lifetime of these

products is directly tied to the supplier’s willingness to continue support. If the companies

go out of business or cease support in favor of a newer generation part, customers will be out

of luck. The GarageRTC project offers the ability for anyone to stand up or share their own

web application servers and therefore can indefinitely support hardware built to meet the

GarageRTC protocols.

9. CONCLUSIONS AND CLOSING REMARKS

The GarageRTC met most of the performance and design requirements as identified in

the concept and requirements phase. The system was more than capable of proving

responsive interactivity with a residential garage door system.

The high-level design outlined an organized approach to system development during

the integration phase. The test plan outlined and iterative updates to the user’s manual kept

development on track and features aligned with the original intent. The ESP based hardware

and Arduino IDE performed well when coupled with the FreeRTOS for the embedded

system. Flask, JavaScript, and SocketIO simplified the development of the web interface and

packet engine interface to the embedded system.

Detailed design produced detailed state machines prior to implementation and helped

align runtime tasks with desired functional behavior. The OLED display was identified early

to not meet desired performance and the 20x4 character LCD was substituted with minimal

re-work. The network simulators being developed allowed the development timelines of the

embedded system and the web to be decoupled. Integration - of the web server and the

embedded portion of the project - was eased by the use of the simulators and the early

established network command interface.

Unit testing verified each component’s functionality independently allowing the

research team to revalidate hardware periodically. This also ensured that both team

members were aligned when implementing the hardware. Extensive bench testing ensured

that only minor issues were encountered when installing the completed system in the

intended environment.

The system was functionally benchmarked against other commercial offerings. The

flexibility of the GarageRTC platform enables it to outperform its commercial counterparts.

Although the GarageRTC did not implement security within its design, the other systems

did not offer details on their security and no firm conclusions could be drawn.

This paper set out to present the features, design, and implementation of a reference

architecture built on an ESP32 microcontroller and FreeRTOS software. The materials created

during this effort have been posted publicly and freely available. The researchers believe this

proof of concept demonstrates that open source IoT products are viable and can offer similar

performance to a commercial product but without the burden of developing and

maintaining dedicated closed source cloud services.

203 © 2020 Jordan Journal of Electrical Engineering. All rights reserved - Volume 6, Number 3

REFERENCES

[1] A. Zeichick, “Throwing our IoT investment in the trash thanks to NetGear,” Network World, 2016.

< https://www.networkworld.com/article/3093439/throwing-our-iot-investment-in-the-trash-

thanks- to-netgear.html>

[2] J. Perlow, “When your IoT goes dark: why every device must be open source and multicloud,”

ZDNet, 2019. <https://www.zdnet.com/article/when-your-iot-goes-dark-why-every-device-

must-be-open-source-and-multicloud/ >

[3] S. Levin, “Squeezed out: widely mocked startup Juicero is shutting down,” The

Guardian, 2017. <https://www.theguardian.com/technology/2017/sep/01/juicero-silicon-

valley- shutting-down>

[4] R. Suehle, “Q&A. What is the secret of Red Hat’s success?,” Technology Innovation Management

Review, 2012. < https://timreview.ca/article/513>

[5] R. Barry, “Mastering the FreeRTOS real time kernal,” Real Time Engineers Ltd, 2016.

<https:// freertos.org /Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_

Hands-On_Tutorial_Guide.pdf >

[6] H. Gochkov, I. Grokhtkov, “Arduino core for ESP32 WiFi chip,” 2020.

<https://github.com/espressif/arduino-esp32>

[7] A. Ronacher, “Flask a microframework for Python,” The Pallet Project, 2020. <https://www.

palletsprojects.com/p/flask/>

[8] G. Rauch, “Socket.IO,” Automattic, 2019. <Available: https://socket.io/>

[9] D. Zajac, J. Harmer, “GarageRTC video demonstration,” 2020. <https://www.youtube.com/

watch?v=IwsxoqProoo>

[10] Chamberlain, “MYQ smart garage hub,” Chamberlain, 2020. <https://www.chamberlain.com/

myq-smart-garage-hub/p/MYQ-G0301-D>

[11] Genie, “Aladdin connect,” Genie, 2020. <https://www.geniecompany.com/ aladdinconnect/

default.aspx>

[12] GarageDoorBuddy, “GarageDoorBuddy - remotely control your garage doors from anywhere,”

Garage Door Buddy, 2020. <http://garagedoorbuddy.com/>

[13] GoCOntrol, “GD00Z-4: z-wave garage door opener remote controller accessory,” GoControl, 2020.

< http://www.gocontrol.com/detail.php?productId=4>

[14] X. Pérez, “FauxmoESP - Amazon Alexa support for ESP8266 and ESP32 devices,” 2019.

[15] X. Pérez, “Using google assistant to control your ESP8266 devices,” Tinkerman, 2020.

<https://tinkerman.cat/using-google-assistant-control-your-esp8266-devices/>

[16] J. Margulies, “Garage door openers: an internet of things case study,” IEEE Security & Privacy,

2015.

[17] C. Goudie, R. Weidner, “Home hackers: digital invaders a threat to your house,” ABC 7 News,

Chicago IL, 2015.

[18] J. Pawar, S. Amirthaganesh, S. ArunKumar, K. Satiesh, “Real time energy measurement using

smart meter,” Online International Conference on Green Engineering and Technologies, 2016.

https://www.networkworld.com/article/3093439/throwing-our-iot-investment-in-the-trash-thanks-%20to-netgear.html
https://www.networkworld.com/article/3093439/throwing-our-iot-investment-in-the-trash-thanks-%20to-netgear.html
https://www.zdnet.com/article/when-your-iot-goes-dark-why-every-device-must-be-open-source-and-multicloud/
https://www.zdnet.com/article/when-your-iot-goes-dark-why-every-device-must-be-open-source-and-multicloud/
https://www.theguardian.com/technology/2017/sep/01/juicero-silicon-valley-%20shutting-down
https://www.theguardian.com/technology/2017/sep/01/juicero-silicon-valley-%20shutting-down
https://timreview.ca/article/513
https://socket.io/
https://www.youtube.com/%20watch?v=IwsxoqProoo
https://www.youtube.com/%20watch?v=IwsxoqProoo

